A RATIONALE FOR THE DESIGN AND SYNTHESIS OF m1 SELECTIVE MUSCARINIC AGONISTS.

H. Tecle*, D.J. Lauffer, T. Mirzadegan, W. H. Moos, D. W. Moreland, M. R. Pavia, R. D. Schwarz, and R. E. Davis

Parke-Davis Pharm. Res. Div., Warner-Lambert Co. Ann Arbor, MI 48105.

(Received 22 April 1992; accepted 24 June 1992)

Abstract. Synthesis of potent and efficacious 1-azabicyclo[2.2.1]heptan-3-one oxime muscarinic agonists is described. These oximes have extended appendages designed to span the cavity defined by the seven helices of the muscarinic receptor.

Five muscarinic receptor subtypes (m1-m5) with unique protein structures have been described. These receptor subtypes belong to the G-protein coupled family of receptors.^{1, 2} Receptors of this family are characterized by the proposed existence of seven helices^{3,4} that define a transmembrane cavity. Within the cavity key amino acid residues appear to play a major role in positioning, orienting and binding an agonist to the receptor. Differences in amino acid sequence and internal topography among the subtypes is very limited.^{1, 5} The design of subtype selective agonists, therefore, is difficult.

Because of the unique distribution of m1 receptors^{1,6,7,8,9} in the peripheral and central nervous system, m1 agonists have the potential to enhance cognitive function without inducing unwanted cholinomimetic-mediated side-effects. Unfortunately, the most m1 selective muscarinic agonist yet described is only twofold selective for m1 over m2 receptor subtypes (McN-A-343¹⁰; Table I). This degree of selectivity is unlikely to translate to improved pharmacologic profiles. A new approach to the design and synthesis of muscarinic subtype selective agonists is required. Two general criteria must be met: 1) Compounds must be non-quaternary amines¹¹ to enhance brain penetration and must exhibit high efficacy at a selected muscarinic receptor subtype, having greater binding affinity for sites labelled by agonists than those labelled by antagonists. Efficacy in stimulating second messenger systems is required.

2) Compounds should be longer and larger than their non-selective counterparts to ensure maximum contact between the agonist and the internal surface of the binding cavity. Longer and larger compounds may bring the agonist into proximity with parts of the receptor unique to a particular subtype. Unique ligand receptor interactions may be required to achieve greater subtype selectivity.

The first criterion has been met by the recently described 1-azabicyclo[2.2.1]heptane oxadiazoles (1).12, 13 The oxadiazole analogs and chemically related compounds12, 14, 15, 16 are small molecules displaying little m1 subtype selectivity. Despite the lack of m1 selectivity in this

822 H. TECLE et al.

> chemical series, we chose the 1-azabicyclo[2.2.1]heptane nucleus as a starting point in the design of the proposed compounds because of its demonstrated ability to yield high efficacy muscarinic agonists.

Agonists Antagonists

Figure 1. Size relationship among agonists and functional antagonists (partial agonists).

Fulfilling criterion 2 has been difficult. Muscarinic agonists tend to be small molecules.

Introduction or extension of one carbon unit to an agonist leads to an antagonist or a partial agonist (Figure 1).11, 12, 13 However, it may be possible to add bulkier groups in some cases and still maintain agonist activity. For example, agonist activity is retained when the methyl group in arecoline (4) is replaced with the bulkier Opropargyl group (8).11 Additionally, retinal, a large/long molecule is an agonist for the G-protein linked receptor rhodopsin.¹⁷ These observations led us to design and synthesize 1azabicyclo[2.2.1]heptan-3-one oximes with a poly-ene/poly-yne appendage. The structures of the oximes, receptor binding data, subtype selectivity profiles and inositol phosphate stimulation data are given in Tables I and II.

The target compounds were prepared by treating 1-azabicyclo[2.2.1]heptan-3-one (19)18 with a hydroxylamine(13). When necessary, hydroxylamines were prepared from the

appropriate alcohols (11) and N-hydroxyphthalimide (10) via the Mitsunobu¹⁹ reaction to give the corresponding O-substituted phthalimides (12). Hydrolysis of the latter gave the desired hydroxylamines in good yields. Complex alcohols such as 2,5-hexadiyne-1-ol (16, $R_1 = H$) and terminally substituted 2,5-hexadiyne-1-ol (16, $R_1 \neq H$), were prepared by Cu mediated coupling²⁰ of propargyl alcohol and propargyl bromides (15, terminally substituted/unsubstituted), Scheme I.

Biological activity was determined using muscarinic receptor binding followed by second messenger characterization. Muscarinic receptor binding assays were conducted using [3H] quinuclidinyl benzilate to label antagonist sites (RQNB) and [3H]-cis-methyldioxolane to label agonist sites (RCMD) in the rat neocortex.^{21, 22} The ratio of RQNB/RCMD has been shown²³ to predict agonist efficacy at muscarinic receptors. To confirm efficacy predictions from the binding assays, the ability of selected agonists to stimulate inositol phosphate accumulation²⁴ was determined (Table II). Selectivity for m1 over m2 muscarinic subtypes was determined by estimating agonist affinity for m1 and m2 receptor subtypes labelled by [3H] QNB in CHO cells selectively expressing human m1 and m2 receptors.²⁵

Our results indicate that synthesis of long/large, efficacious and potent 1-azabicyclo[2.2.1]heptan-3-one oxime muscarinic agonists is possible. The 2-propynyl (20h), 2,5 hexadiynyl (20p) and 2,5,8-nonatriynyl (20u) oximes are potent and efficacious muscarinic agonists (IC $_{50}$ = 3.5 nM, 22 nM, 8.0 nM and ratios of RQNB/RCMD =1245, 402 and 119 respectively). These compounds meet our first criterion. Furthermore, these compounds are longer and larger than previously described muscarinic agonists. This may lead to greater subtype selectivity. As an early indication, compound 20v has greater affinity for m1 versus m2 receptor subtypes. Additional work to achieve greater agonist subtype selectivity is in progress.

Scheme 1

A)

NOH + HO R

(i)

NO R

(ii)

NO R

(iii)

H2NO R

13

(i) DEAD, Ph₃P, THP, RT. (ii) conc. HCl,
$$\Delta$$
 or EtOH/HCl, Δ or H₂NNHCH₃/CH₂Cl₂/RT

B)

HO

14

(i) CuCl, EtMgBr, THF, Δ . (ii) H⁺

C)

HO

14

(i) PdP(Ph₃)₄, Cul, THF

D)

NO R

19

13

(i) MeOH, RT

H. Tecle et al.

Table I. Muscarinic affinity and sub-type selectivity of alkyl and alkynyl 1-azabicyclo[2.2.1]heptan-3-one oximes

		N O-F	3		Tr	C ₅₀ μm*	
			3.54	DOM:			2
			o <u>nM*</u>	RONB		RONB	<u>m2</u>
NO	R	RCMD	RQNB	RCMD	m2	ml	m1
20a	н	>100	>1000	NA	NA	NA	NA
20b	CH ₃	18.2	24558	1349	7.89	85.05	0.09
20c	CH ₂ CH3	12.5	3112	249	NA	NA	NA
20d	CH ₂ CH ₂ CH ₃	120.0	3846	32	3.98	3.68	1.1
20e	CH(CH ₃) ₂	46.0	2030	44	3.15	2.61	1.2
20f	C(CH ₃) ₃	91.0	3540	39	4.46	3.84	1.2
20g	cBu	88.0	1156	13	1.63	1.11	1.5
20h+	CH ₂ C≡CH	3.5	4359	1245	1.04	9.51	0.1
20i	CH ₂ C≡CCH ₃	4.0	4214	1054	1.70	5.81	0.3
20j	CH ₂ C≡CCH ₂ CH ₃	3.6	5976	1660	8.60	4.90	1.8
20k+	CH ₂ C≡CCH ₂ CH ₂ CH ₃	48.0	8689	181	20.6	9.64	2.1
201+	CH ₂ C≡CCH ₂ CH ₂ CH ₂ CH ₃	44.0	6045	137	9.65	7.89	1.2
20m	CH(CH ₃)C≡CH	35.0	3984	114	5.28	3.69	1.4
20n	CH ₂ CH ₂ C≡CH	83.0	9806	118	15.59	14.45	1.1
200+	CH ₂ CH ₂ CH ₂ C≡CH	111.0	3655	33	NA	NA	NA
20p	CH ₂ C≡CCH ₂ C≡CH	22.0	8834	402	2.84	10.01	0.3
20q+	CH ₂ C≡CCH ₂ C≡CCH ₃	39.0	2914	75	5.08	5.68	0.9
20r+	CH ₂ C≡CCH ₂ CH=CH ₂	32.0	7313	229	15.9	9.44	1.7
20s	CH ₂ CH=CHC≡CH	35.0	13850	396	30.2	12.6	2.4
20t	CH ₂ C≡CCH ₂ OCH ₃	55.0	35434	644	59.3	42.4	1.4
20u+	CH ₂ C=CCH ₂ C=CCH ₂ C=CH	8.0	958	120	2.18	2.03	1.1
20v+	CH ₂ C≡CPh	46.0	5012	109	25.8	5.42	4.8
	McN-A-343	25.0	5304	212	12.93	4.	2.6
	Carbachol	6.7	33000	4925	3.46	124.83	0.03
1	oxadiazole	0.3	88	293	0.02	0.4	0.05

^{*}For IC₅₀ determination, each drug was investigated in triplicate at 5-6 concentrations. NA = not active;

⁺Oximes isolated in pure Z form; the rest of the oximes were isolated as a mixture of E and Z isomers.

Table II. 1-Azabicyclo[2.2.1]heptan-3-one oxime induced inositol phosphate accumulation.

NO	CN NO-R	NO-F	_H	<u>MPA</u> (a)_	MIPA(b)	
	R	RCMD	%CCh	(c) EC ₅₀ (d)	%CCh(c)	EC ₅₀ (d)
20b	CH₃	1349	NT		53	14.6
20c	CH2CH ₃	249	NT		19	8.9
20d	CH2CH₂CH₃	32	44	27.00	3	ND
20h	CH ₂ C ≖ CH	1245	104	0.89	51	8.4
20i	CH ₂ C=CCH ₃	1054	63	1.90	49	8.8
20j	CH ₂ C≕CCH ₂ CH ₃	1660	72	5.90	56	9.6
20p	CH ₂ C=CCH ₂ C=CH	402	79	4.70	14	16.4
20q	CH ₂ C≕CCH ₂ C=CCH ₃	75	81	5.05	2	ND
20u	CH ₂ C=CCH ₂ C=CCH ₂ C=CH	120	50	5.10	0	ND
20v	CH ₂ C = CPh	109	76	3.30	11	ND
	McN-A-343	212	57	3.50	3	ND
	Carbachol	4925	100	5.69	100	10.6
1	Oxadiazole	293	100	0.269	104	<1

(a) HMPA (Human Muscarinic Inositol Phosphate Accumulation) was measured in CHO cells expressing human m1 receptors. (b) MIPA (Muscarinic-stimulated Inositol Phosphate Accumulation) was measured in SK-N-SH neuroblastoma cells expressing human m3 receptors. (c) Compounds run at 100 μM; 100 μM of carbachol was used; results are means of two experiments done in triplicate at 5 concentrations. ND = not determined. NT = not tested. (d) EC₅₀s are in μM.

References

- 1. Baker, R.; Saunders, J. Annu. Rep. Med. Chem., 1989, 24, 31 and references therein.
- 2. Buckley N.J. in <u>Transmembrane Signaling</u>, <u>Intercellular Messengers and Implications for Drug Development</u>; Nahorski S.R. Ed.; John Wiley & Sons, 1990.
- 3. Venter, J. C.; Fraser, C. M. in Drug Discovery Technologies, Clark, C.R.; Moos, W.H.; Ed., Ellis Horwood: Chichester, 1990; p 231.
- 4. Bonner, T.I.; Buckley, N.J.; Young; A.C. Brann, M.R. Science, 1987, 237, 527.
- 5. Hulme, E.C.; Birdsall, N.J.M.; Buckley, N.J. Annu. Rev. Pharmacol. Toxicol., 1990, 30, 633
- 6. Goyal, R.K. N. Engl. J. Med., 1989, 321, 1022.
- 7. Levey, A.I.; Kitt, C. A.; Simonds, W.F.; Price, D.L.; Brann, M.R. J. Neurosci., 1991, 11,

826 H. Tecle et al.

- 3218.
- 8. Kumar, V.; Calache, M. Int. J. Clin. Pharmacol. Ther. Toxicol., 1991, 29, 23.
- 9. Schwarz, R. D.; Coughenour, L. L.; Davis, R. E.; Dudley, D. T.; Moos, W. H.; Pavia, M. R., Tecle, H. in Cholinergic Basis for Alzheimer Therapy, Becker, R., Giacobini, E.; Ed., Birkhauser: Boston, 1991; p 347.
- 10. Hammer, R.; Giachetti, A. Life Sci.; 1982, 31, 2991.
- Ringdahl B. in <u>The Muscarinic Receptors:</u> Brown, J.H., Ed.; The Humana Press: Clifton, New Jersey, 1989, p 151 and references therein.
- 12. Saunders, J.; Freedman S.B. <u>Trends Pharmacol. Sci.</u> (suppl. Subtypes Muscarinic Receptors), 1989, <u>10</u>, 70.
- Tecle, H; Bergmeier, S. C.; Coughenour, L. L.; Davis, R. E.; Hershenson, F. M.; Kester, J. A.; McKee, J. S.; Marriot, J. G.; Moos, W. H.; Schwarz, R. D.; Thomas, A. J. <u>Abstracts of papers</u>, 198th National Meeting of the American Chemical Society, Miami Beach, Fla; American Chemical Society; Washington, DC, 1989; Abstract MEDI-7.
- Sauerberg, P.; Kindtler J.W.; Nielsen L.; Sheardown M.J.; Honore T. <u>J. Med. Chem.</u> 1991, 34. 687.
- MacLeod, A.M.; Baker, R.; Freedman, S.B.; Patel, S.; Merchant, K.J.; Roe, M; Saunders, J. <u>J.</u> <u>Med. Chem.</u> 1990, <u>33</u>, 2052.
- 16. Street, L. J.; Baker, R.; Book, T.; Reeve, A.J.; Saunders, J.; Willson, T.; Marwood, R. S.; Patel, S.; Freedman, S.B. <u>J. Med. Chem.</u> 1992, <u>35</u>, 295.
- a). Henderson, R.; Schertler, G.F.X. Phil. Trans. R. Soc. Lond. B 1990, 326, 1990.
 b).Mirzadegan, T; Liu, R.S.H. in Retinal Research: Osborn, N. N., Chader, J. G. Ed.; Pergman: Oxford, 1992; p 57.
- 18. Cottrell, I.F.; Hands, D.; Kennedy, D.J.; Paul, K. J.; Wright, S. H. B.; Hoogsteem, K. <u>J. Chem. Soc. Perkin Trans.</u> I 1991, 1091 and references therein.
- 19. Grochowski, E.; Jurczak, J. Synthesis, 1976, 682.
- 20. Brandsma, L.; Preparative Acetylenic Chemistry; Elsevier; Amsterdam, 1988; p 225.
- 21. Vickroy, T. W.; Roeske, W.R.; Yamamura, H.I. J. Pharmacol. Exp. Ther. 1984, 229, 747.
- 22. Watson, M.; Yamamura, H.T.; Roeske, W.R. J. Pharmacol. Exp. Ther. 1986, 237, 411
- Tecle, H.; Bergmeier, S.; Moos, W.; Hershenson, F.; Coughenour, L.; Davis, R.; Schwarz, R.; Moreland, D.; Dudley, D. <u>Abstracts of papers</u>, 197th National Meeting of the American Chemical Society, Dallas, Tex; American Chemical Society; Washington, DC, 1989; Abstract MEDI-47
- Coughenour, L.; Davis, R.; Moos, W.; Schwarz, R. <u>Abstracts of papers</u>, 17th Annual Meeting of the Society for Neuroscience, New Orleans, LA; Society for Neuroscience; Washington, D.C, 1987
- Schwarz, R.D.; Boyd, D.K.; Spencer, C.J.; Woodward. <u>Abstract of papers</u>, 21st Annual Meeting of the Society for Neuroscience, New Orleans, LA; Society for Neuroscience; Washington, D.C, 1991.